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We consider a classical dipole gas in the grand canonical ensemble. We prove 
that in dimensions greater than or equal to three, and for all temperatures, the 
free energy and the charges-dipoles correlation functions have an expansion in 
powers of z, the fugacity of the system, which is asymptotic to all orders. We 
also give some information about the decay of correlations. 
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1. I N T R O D U C T I O N  

In  this paper  we consider a classical lattice system of particles interacting 
via a dipole potential  in the grand  canonical  ensemble. In  this model,  
particles occupy  sites of a lattice Z d, and  the (unit) dipole momen t  of each 
particle takes one of only a finite number  of orientations, namely,  the 2d  
canonical  direction of Z d. T h e  potential  between two particles located at x 
and  y of dipole m o m e n t  e x and ey is given by 

ff J*k [ e x p i k ( x  - y )  ] ( e x p i k .  e x - 1 ) ( e x p i k  . ey - 1) 

-1  

x 2 (cosk. - l) 
j = l  

where ~, j = 1 . . . . .  d, is the canonical  basis of Z d. The the rmodynamic  
limit of the free energy and of the correlation functions of this system in the 
grand canonical  ensemble is known to exist. (5) Since the pair potential  is 
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not absolutely integrable, none of the classical methods (1~ giving analytic- 
ity in z, the fugacity of the system, around z = 0 applies in this case. 
Moreover it is known that the effective dipole potential is not absolutely 
integrable (absence of screening), (9'6) therefore the cluster expansion used 
in Ref. 4 for the Coulomb gas does not apply. 

Nonetheless, in this paper, we succeed in proving a weaker result than 
analyticity: in dimensions greater than or equal to 3, the free energy and 
the correlation functions are asymptotic to all orders in z about z = 0. We 
also have a similar result for correlation functions of charged particles 
immersed in the dipole gas. 

Our results are obtained by first doing a "sine-Gordon transforma- 
tion ''(5'11) which shows the equivalence of our model to a classical system 
of unbounded spins described by the Hamiltonian 

- / ~ H  = --(2/~)--1 2 (~x -- •y)2_{_ Z 2 C0S(~x -- ~y) 
<x,y> <x,y> 

where q)x is a random variable uniformly distributed on R, ,8 = T -1  is the 
reciprocal temperature, and z is the fugacity. In this language we see that 
the desired expansion about z = 0 is an expansion about a lattice massless 
Gaussian field. We can therefore apply ideas developed in Refs. 1-3. 
However, the main difficulty is that the integration by parts formula, which 
was used in Ref. 1 to generate the expansion, does not appear to be useful 
to estimate the remainder term after the first n orders have been extracted. 
Instead we generate the expansion by using the method of "complex 
translation" introduced in Ref. 7, and used in Refs. 7 and 6 to obtain 
results about the decay of correlation in d = 2. However, we have to 
introduce a regularization of it to be able to estimate the remainder. To 
prove our result for charge correlation functions we also make use of the 
inverse power law decay of the truncated charge-charge two-point function 
as in Ref. 3. This decay is obtained by applying the F K G  inequalities in the 
form of Ref. 8 and the known inverse power law decay of (~0~)x) obtained 
as in Ref. 2. 

Finally the paper is organized as follows: in Section 2 we describe the 
model and some of its known properties. Section 3 contains the statement 
and the proof of the main theorem. In Section 4 we prove some technical 
results used in Section 3. Finally we give some generalizations, and sketch 
the two-dimensional case. 

2. DEFINITION OF THE MODEL 

In this paper we consider the following lattice dipole gas: to each point 
x of the lattice Z d, d > 3, is associated a unit vector e x which is an element 
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of (ek}k= 1 .. . . .  d, the usual canonical basis of Z d (e  k -~. ~ik), and a variable 
e x which takes values _+ 1. o x = exe~ will be viewed as a unit dipole moment  
of a particle (called a dipole) sitting at x. 

Given f :  Zd ~ R, and g : Z d • Zd ~ R, we define 

V ~  = f ( x )  - f ( x  + e) 

vev~f(X,  y)  = I f ( x ,  y) -- f ( x  + e, y ) ]  

-- [ ( f ( x ,  y + e ' ) - -  f ( x  + e, y + e')] 
We are now able to define the potential between two dipoles o x and oy by 

V(x, y, o x, ay) = excyVexv;'C(x, y) 

where 

[ 1-2 C(O,x)=(2 )-df Jdk(expik'x) E(1-cosks) --COx 
- 

k~ = k .  e~, ~ ~ ~, 
ea, a = l  . . . .  , d  

The potential for N dipoles at position (X)N = ( X l . . .  XN) with dipole 
moments  (O)N = (01 . . . ON) is 

= E 
l<i<k<N 

The grand canonical ensemble partition function associated to a compact  set 
A C_ Zd i s  

~(A, fl, z )=  ~ zN(N! )  - l  ~] exp(--fiU((X)N,(a)N)) 
N = O  x j  . . . . .  x N ~ A  

or 1 . . . O N 

where z is the actMty or fugacity and fl = T -~  is the inverse temperature. 
The correlation functions OA((XO)M(aO)M, fl, Z) equal 

00 

E zN+M(N!) - '  ~, exp(--fiU((xO)M,(OO)M,(X)N,(O)N)) 
N = O  x 1 . . . . .  x N E A  

O l  - ' - ~ N  

We also introduce correlation functions of charged particles immersed 
in the dipole gas. A particle of charge q E Z located at a point x ~ Z u will 
be denoted by (x,q). The cha rge -cha rge  potential  Vl(x ,q ,x ' ,q '  ) = 

e v  qq'C(xx'), and the charge-dipole potential V2(x, q, y, a) = qeVj, C(x, y). 
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The general correlation function of L charges (x~ = (x ~ . . . x~ (q~ 
= (ql . . .  qD and M dipoles (y~ (o~ is 

p~((xO)Aq)~; (yo)~(o%; ~:) 
00 

= ~ ZM+DN(N!) - '  
N = O  

• Z exp(--flU((xO)L,(q)L,(YO)M,(oO)M'(X)N(O)~V)) 
x ~ . , .  x N E A  

0 1  . , . O N 

where 

U((x)L,  (q)c '  (Y)M, (~ = v,(xiq, xjqj) + ~ v2(x, qiyj~:) 
l < i , j < L  I<~j<L 

I < j < M  

+ Z v(y;o, yj~) 
l < i , j < M  

2.1. The sine.Gordon Transformation (5,11) 

Let dtt~ be the usual Gaussian measure associated to the lattice 
massless free field of covariance tiC(O, x). 

Proposition 1 .(5,1 i) 

(b) If 

L x~A j 

O~(,(X)L(q)L;(y)M(O)~, B,Z)= Z M§ I1 expiqk~'(x~) 
k ~ l  

• _[I exp ie~7 
A,z 

2.2. Correlation Inequalities 

Let m:zd---~R be a function of finite support, and define i f (m)= 
~i~im(i).  



Low-Fugaelty Asymptotic Expansion for Classical Lattice Dipole Gases 771 

Proposition 2. (s) 

(a) (cos~(m)cos~b(n)~A, ~ --(COSq)(m)~A,~(COS~(n)~A, ~ ~> 0 

(b) ([ dp(m) ]2cosdp(n)~h,z -- ([ d?(m) J2~A,z(cosdp(n)~A,z < 0 

The pressure PA(/3, Z) = IA[- qog Z A. 

Proposition 3. (5) 

(a) 

(b) 

(c) 

lim PA(/3,z) =p(/3,z)  exists. 
A - - )  oo 

lim pA((x)r,  (q)L; (Y)M' (a)M; /3' Z) 
A - - )  oo 

= P((X)c(q)L; (Y)M' (O)M: /3, Z) exists. 

lim (O(x)4)(y))A,~ = (q'(Y)g'(Y)} exists. 
A---) (:c 

Roraarks, (1) By the usual arguments, Proposition 2(a) and (b) 
imply Proposition 3(b) and (c). Moreover 

((qS(n))2~z < ((ff(n))2)z=0 < oo (1) 

(2) Brascamp-Lieb inequalities (13) can be applied for z < f l -  l where 
they give the estimate (expl~ol) z < oo. 

In what follows since/3 does no t  play any significant role we shall assume 
/3=1.  

2.3.  Decay of Correlatior~s 

Proposition 4. 

(a) 0 < (.%'~x)z < clxl-Ilnlxl 
(b) 0 < (~oq'x), < clxl =1 

I(V0,~Vx4%l < clxl-' (c) , e' 

for d = 3 

for d >/4 

for all d 

This proposition is a direct consequence of Theorem 2 of Ref. 2 
because of the momentum space bound implied by (1) and because of the 
monotonicity property: (q~0q'x)z < (q'0~x+ 1)~, where x and x + 1 are along 
a coordinate axis. This last property follows from reflection positivity and 
translation invariance; the existence of a transfer matrix needs not to be 
assumed. 

The system satisfies F K G  inequalities in the q) variables; this is an easy 
consequence of the Batt le-Rosen condition, (14) as has been pointed out to 
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us by J. Fr6hlich. Therefore Newman's theorem (8) can be applied to show 

expi qt*, - �89 2 Iql[ tqnl(*,gi'~) 
l =  1 lv~ n 

In particular we have the following decay of the charge-charge truncated 
correlation function. 

Proposition 5. 

Ip(O, qo, X, qx) - o(O, qo)o(O,q~) I < C[qoq,[ Ix[-~lnlxl 

N.B. In the whole paper C will stand for a positive constant which can 
take different values at different places. 

3, THE MAIN RESULT 

Theorem. In dimension greater than or equal to three, and for all 
temperatures the free energy p(z, fl) and the correlation functions O((x)L, 
(q)L;(y)M,(O)M;Z, fl) have about z = 0 an asymptotic expansion to all 
order in z. (The first term in the expansion of the correlation function is of 
order z L + g.) 

Before starting the proof of the theorem we explain how to use the 
method of "complex translation ''(7) to generate the expansion. Let us 
consider the expansion of 

(expiVeoq)A,z = Zs ~ (cosV~q~)]d/~(0) (2) 
" \ xEA l 

Doing the complex translation e~ x ~ q~x + lax, with a x = VoC0~ in the func- 
tional integral of the numerator of (2) we obtain 

( e x p i V ~ )  = z # l f ( e x p  - V~176 x~a ~ eos(V]~ + irma)) 

[ l ~x,~ (V~a)2][exp-i~V~xaV~q~]cl~(q~ ) (3) • 
L exp ~ x,~ j 

Now ~ ,~ (V~a)2=~a~( - -A~)a ,  where A is the finite difference 
Laplacian. With our choice of a~ and using --A(VoCo~ ) = 8o~-  81~, we 
have 

E (Via) : - -  ((V0q~)2)o 
x,~ 
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as the Gaussian expectation value. Similarly 

x,~ 

Therefore, 

I ' ] (3) -- ZA -1 exp - -~((7o,)2)G expz ~ cos(V~x + iV~xa) dl~(, ) (4) 
x E A  

One should really derive this formula by doing complex translation on the 
Gaussian measure restricted to a finite set A o D A and then take A o ~ ~ to 
obtain the result. The right-hand side of (4) may be written as a zeroth- 
order term, Ao, plus remainder, R(z): 

(3) = exp - �89 

+ A ~  zx~A ~ [c~ + iV~a) - c~ V~xq~] } - 1 )  

= A  o + A o (  xp z ~ c o s V ~ ( c o s h V ~ a -  1) - 1  
x ~ A  

•  s i n V ~ s i n h V ~ a ) ) x E a  

+Ao(exp(iz2sinV~xeOsinhV~a t - 1) (5) 
x,~ J 

However, as we shall see next, the remainder R(z) is not easily shown to be 
small with z. As in Ref. 1 we shall not expand about a massless theory but 
rather around a theory of small mass m(z)= e x p -  (lnz) z. This will be 
done by translating ~x by ia x, where a x is a function of the massive 
covariance C ~  of the lattice Gaussian field of mass m = m(z). For instance 
a x = VoC ~. 

Proof of the Theorem. (1) The result for the free energy easily 
follows from the result on the correlation functions and the formula 

p(z) = p(o) + f0z  <cos 

We prove the result for the correlation functions by first considering L = 0. 
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(2) Dipole correlation functions. We start by estimating the remainder of 
(exp iV~g,) after extraction of the zeroth-order perturbation theory. Apply- 
ing (3) with a x = V~C0 m and using -AC0" ~ = 8Ox - m2C~, we get 

(expiV~q~) = e x p -  �89 - '  f(expz~-]~ cos(V~ + x , ,  iV~a)] 

• (V~)Coj~j)]exp[-lm2~j (V~Coj)2]dlz(ep) (6) 

1 V e  2 Denote the massive Gaussian expectation value exp - ~ ( (o0 )  )G,m by A~". 
Then (6) becomes 

A~(exp (z ~ [cos(V~x~b + iV~x a) - c o s  V~x~b ])  
x,~ 

• V~Co~)expI_  1 2 e ~ m  ~(VoCo~)2] - 1) (7) 

Calling the three exponentials in (7), respectively, E], ~72, E3, one has 
(expiV~)  = A~' + Rl(z ) + R2(m ) + R3(m), with Rl(z ) = (E  l - 1), R2(m ) 
= (EIE2(E 3 - 1 ) ) ,  Ra(m ) = (EI(E 2 -  1)). In the next section we shall 
show [A~' - A g ' = ~  I -<< m const. Therefore the remainder R(z) has been split 
into four parts with Rl(z), the z term, similar to R(z) except that it contains 
the massive covariance. R2(m ) and R3(m ) will be called the mass terms. 
They correspond to the mass terms introduced in the regularized integra- 
tion by parts formula of Ref. 1. We shall show that they may be ignored in 
the expansion because they are proportional to exp - (In z):. 

Estimate of the remainder 

Lemma. 

~ l c o s h V ~ a -  1[ < C and ~-~lsinhV~ai< Clnm 
x,~ x,~ 

The proof of this lemma follows from the estimates 

c o s h x -  1 <~ X 2 IX I < 1 

sinhlxl -<< 21xl Ix[ < 1 

and 

e e' ~ (VoVxCox): 
x 

(8) 

e e '  ~,, IVoVxC0x[ < Clnm see Ref, 1 
x 
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We are now ready to estimate the different parts of the remainder: 

(a) R](z) = ( t  / exp[ zk ~x,t (cos V~q~)(cosh V~a-  1)1-  1 ) 

• exp(iz x~ sinh Via sin vi~))  

+ (coS(Zx~ sin Vi~sinh Via ) - 1) 

+ i(sin(z~, sin Viq~ sinh Via)) (9) 

Applying Taylor's theorem together with the lemma one gets IRl(z)] 
Cz exp Cz + z2C(lnm) 2. If m were not z dependent, this estimate would 
blow up in the limit mS0. This is why we had to introduce a z-dependent 
mass and could not estimate directly the remainder R (z) in the form of (7). 

(b) R2(m ) <~ ([EI[ [EEl IE3 - 115. 

[Eli < C by estimates similar to those done in case (a). IE21 < 1 and 
[E3- 11 < C m  2 by the lemma and Taylor's theorem. Therefore R2(m ) 
<~ C m  2. 

(c) R3(m ) < (Ig,I  IE~ - l l )  

-  cos(m  x 

Again by Taylor's theorem 

(IE2- 112) 1/2 <. C m VoCoxVoCoy(eOxC~y) 

< Cm(q,g) 1/2 by Ref. 1 
< Cm by Remark (1) 

The higher-order terms are obtained by expanding R](z ). For instance 
terms of second order are given by 

z2 2 (cosh V i a -  1)(cosh V ; a -  1) ZEx,~ (cosh V!~a - 1)<cos vi~>l 4- T x,~ 
y,r/ 

Z 2 
• (cos Vi~ cos V~)0 - -~- ~ sinh Via sinh V~a (sin Vi9 sin V~9) 

x,~ 
y,~ 
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where ( ) i  m e a n s  ith order in perturbation theory. This easily follows from 
Taylor's theorem and the lemma. The remainder given by Taylor's theorem 
is bounded by Cz 3 + za(lnm) 4. N o w  

v e  2 x,,~ 1)] 2 } ( s inV~ ' ) l  = e x p ( - ( ( o * )  )o,mZ[ ~ (c~ V~x a -  

by applying the preceding procedure twice. 

(sinV~x~sinV~)o = E (exp(ie~V~q~+ ieyV;6)) o 
ex,~y= • 1 

The result follows by translating G - ~ G +  ibu with b~= %V~Cxu+ 
cyVyCy~. The estimates of R1, R2, R3 are done as before. There are, 
however, extra ln m factors coming from ~x,t,y,~[sinh V~b I Isinh V~b[. It is 
easy to generalize the preceding procedure to higher order of general 
correlation functions (see Section 4). 

Each time we apply the complex translation formula three kinds of 
terms are produced: 

(a) Purely Gaussian terms [e,g., exp - �89 ((Voq~)2)G,m]. 
(b) z terms which are contained in Rl(z) and are small with respect to 

the Gaussian terms. 
(c) Mass terms which are proportional to e x p -  (ln z) 2 and therefore 

disappear from the expansion. 

So in general we shall obtain 

p((X)N,(O)N , fl, z) ='zU[Ao(m) + A , (m)z  + . . .  + Ak(m)z  k + O(zk+~)]  

This proves the theorem because in Section 4 we shall prove 

Vl, [At(m ) - Az(m = 0)] ~ Cm = Cexp - (lnz) 2 

(3) Charge correlation functions. For charge correlations, we apply 
essentially the method described in Ref. 3. That is, if we want the expan- 
sion of ( e x p i ~ 0 ) =  (cos q50), we first write (cOS0o) 2 =  cos(~ 0 -  G ) -  
[(eos(q~ 0 - ~ ) )  - (cos ~052]. By Proposition 5 the second term is bounded 
by CIx I-~ ln[xl. Therefore if we want an expansion up to order n we choose 
ix[ = z -~"+1) so that Ixl-~lnlxl < Ilnzlz"+l(n + 1), i.e., it will be part of 
the remainder of the expansion. We now perform an expansion in z up to 
order n of ( cos (00 -  q5~))~ the dependence in z of which comes from the 
measure and from x = z-~" + l). As before the expansion of (exp i(00 - G ) )  
is generated by complex translation. Let us consider the remainder after the 
first translation Ou--> Ou + i( Co~ - C~,) = q~, + i G. 

(a) The mass terms. As 

IVdCo.- G )I < IxlVoV.Co=, ICo.- C~ol < Ix[ ]VoCo.[ (10) 
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the estimates we had in (2) for the mass terms are multiplied by a factor 
[x[ = z -(n+l) . They remain negligible in the expansion. 

(b) The z terms Rl(z ). As before we Taylor expand the functions in 
Rl(z ) up to order n + 1 in z. A typical coefficient of this expansion is, for 
instance, 

z2k(2k! ) -  1 E sinh V~a-  �9 �9 sinh Vza  (sin V~q) �9 �9 �9 sin V~,~) 
X I �9 . . X k 

(in which we have dropped the direction of the gradients to make notation 
simpler). The expectation value (sin Vx, ~ �9 �9 �9 sin Vxk~> is reexpanded up to 
order z ~ with a = 2k(n + 1) + n + 1. By the estimates of case 2(a), the new 
z terms produced will be bounded by 

Cz,~z- 2~(,+ l) = Cz~+ l(lnm) '~ 

which is small compared to z ~. 
After this first step, the Gaussian terms produced are still z dependent 

since x = z - ( ' -  0. We reexpand them in z as in Ref. 3. However, we have 
to use the multiangle formula for sinh and cosh (13) to write them as 
Gaussian expectation values involving only q~o or q~ (which do not depend 
upon x by translation invariance), and Gaussian expectation values mixing 
q~0 and q~. These last terms are negligible in the expansion because they are 
of order z n+ ~/2. This is proven as in Ref. 3 by using Weinberg's theorem (12) 
instead of the explicit computation. We finally get the result after applying 
Proposition 6. The case of more general charge correlation functions is 
done using reflection positivity as in Ref. 3. [] 

4. GAUSSIAN ESTIMATES 

In this section we first show that the coefficients of the perturbation 
expansion in z of the correlation functions are finite. We then estimate the 
difference between coefficients computed in a massive and a m~ssless 
Gaussian theory. These two results are used in the proof of the theorem. 

In this section we drop the direction symbols in the Vx'S since they 
play no significant role. 

4,1. 

Let us consider the expansion of 

(cos V0~ �9 �9 �9 cos V,q, sin V,+ ]~ �9 �9 �9 sin V,+2pq~ ) 

where 

2cosVq~= ~ (expieV~), 2 i s i n V ~ =  ~ e(expi~Vq 0 
e = _ + l  e = _ + l  

Construction of Graphs and Finiteness of Perturbation Theory 

(ll) 
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the zeroth-order term is obtained by e~ x --> eOx + ib x with 

b x = e0VoC0x + �9 �9 �9 + en+2pVn+2pCn+2px; c = ( e  I . . . . .  s  

(11) = 2 s  s I-I (sinhe/eyVxVyC~y + c~ 
c (x,y) ~ A 

+s  ( c o s h V x b - 1 ) c O S V x q ~ ] -  | )  

• SinhV~bsinV~eO ))  

+ ( e x p ( i z ~ s i n h V x b s i n V x e O )  - 1) 1 

( +  terms proportional to m) 

(A = { 0 . . .  n + 2p}). A term of order k in the expansion of (11) is given by 

Z s E s + 1 ' ' "  s + 2p (c~ V x b  - 1 ) - - ,  (cosh V~b - 1) 
IE 

x sinh Vx,+b �9 �9 �9 sinh Vx, 

• b(cos Vx~q~ �9 �9 �9 cos Vx/e~ sin V~,..r �9 - �9 sin V~,r (12) 

k = s + t and t < k. We apply the multiangle formulas 

cosh(x _+ y)  = cosh x cosh y _+ sinh x sinh y 
(13) 

sinh(x + y)  = sinhx cosh y + coshx sinh y 

successively to cosh V b and sinh V b, and we write 

+ other terms (involving sinh and cosh) 

The different terms produced can be represented graphically; the propaga- 
tors sinh VxVyCxy and (cosh VxVyC~y - 1) are respectively represented by a 
line and a dashed line between x and y. (coshVxVyC~y will not be 
considered since it does not affect convergence.) 1 . . .  n + 2p are called 
external points and x ~ . . .  x s are called internal points. We shall now 
establish the restrictions imposed on such graphs. 

(a) Case of the sinh lines. Applying the multiangle formula to 
cosh V~b, we find that each term contains an even number  of sinh lines 
going out of xj ( j  = 1 . . .  l) (essentially because cosh is an even function). 
However, there will be an odd number  of lines going out of x~, j = l + 
1 . . .  s (because sinh is odd). All these lines join internal points to external 
points. 
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After summation on c, graphs will cancel and only those graphs with 
an even number  of lines arriving at 0 . . .  n and an odd number  of lines 
arriving at n + 1 . . .  n + 2p will survive. 

(b) Case of the ( c o s h - 1 )  lines. The  t e rms  (/-lk=0 . . . .  +2p 
cosh V x VkC x - 1)D (D is a function of sinh and cosh) can be written as a 

j k  . . 

sum of terms ~(cosh  V~ VkC ~ - 1)BD (B 1s a function of cosh) by means j ]k 
of the formula xy - 1 = �89 - 1)(y + 1) + (y  - 1)(x + 1)]. In other words 

a (cosh - 1) line is produced between xj and an external point. Agairr after 
summation on c no such line arrives at the external points n + 1 . . .  n + 2p. 

These considerations yield the following as the conditions which such 
graphs must satisfy. A graph of order k has k internal points. At each 
internal point an even number  of sinh lines terminate, and an arbitrary 
number  of ( c o s h -  1) lines. Moreover, each connected component  of the 
graph must contain at least an external point. 

To each graph one associates a number  by summing over all the 
internal variables. To prove the convergence of these sums uniformly in m, 
we apply Weinberg's theorem (12) because either a point belongs to a 
(cosh - 1) line, or it belongs to an even number  of sinh lines. Similar rules 
can be obtained to prove the convergence of the graph produced in the 
expansion of charge correlation functions. 

0 

Fig. 1. A graph of order k. 

X I 
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4.2. Oifferences of Coefficients 

Suppose the asymptotic expansion of a correlation function is given by 
ao(m)+ al(m)z + . . .  + ak(m)zk + O(z ~+') where the ai(m ) are com- 
puted with a covariance of mass m. Then we have the following proposi- 
tion. 

Proposition 6. 

Vi, [ai(m ) -- a,(0)l < m(lnm)  i 

Proof. Since we cannot compute explicitly the graphs in Fourier 
space, the proof of this proposition differs slightly from the one given in 
Ref. 1. 

(a) Case of dipole correlations. As in Ref. 1 it is sufficient to estimate 
A m G = Gm - Go, where G,, is a graph of order k and G o is the same graph 
but the massive propagator sinh VoV~C0 m is replaced in one line by the 
massless one [the case of (cosh - 1) lines is easier]: 

Isinh VoV~Co" ~ - sinh VoV~C~=~ < [VoVxCo" ~ - VoV~C~=~ 

<<. rn2CE ICxyl IVoV yCoy[ =- m2f(x) 
X 

The new graph G, defined by replacing (in the chosen line) the massive 
propagator by f (x) ,  is still convergent. This follows from Weinberg's 
theorem. (12) Therefore [A,.G[ < Cm 2. 

(b) The coefficients arising in the expansion of a charge correlation 
function contain two kinds of sinh propagator: 

(1) A propagator connecting an external point to an internal point 
sinh VoCox. 

(2) A propagator connecting internal points: sinhVoVxCo~. For a 
sinh VoCo~ line, 

[sinh VoC0" ~ - sinh VoC0x I < Cm: E cxylVoCoyl ~ m2g(y) 
X 

By applying Weinberg's theorem as above for a graph of order k one gets 
[AmG [ ~< C(lnm)km. In the case of a (sinhVoVxC0x) line IAmGI-<< 
C(ln m )km 2. 

N.B. We have not considered the self-energy graphs connecting a point 
to itself, e.g., exp[-�89 They do not present any difficulty; one 
can resume them by Wick ordering the interaction, which is equivalent to 
multiplying z by a constant. 
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Remarks. (1) The theorem is also true for the dipole correlation 
functions in the case of a system of arbitrary length dipoles, provided the 
maximal length of the dipoles is finite. In the sine-Gordon representation 
this corresponds to an interaction 

z X cos[~b(x)  - ~b(x + leG) ] 
x,e~ 

l = l  . . . k < o o  

All the estimates we had for the nearest-neighbors case are multiplied by a 
finite constant. 

However, in this more general model we cannot prove the existence of 
an asymptotic expansion for the charge correlation functions. This is 
because we do not have reflection posifivity for non-nearest-neighbor 
interactions. 

(2) In two dimensions, the model is well defined and so is the 
sine-Gordon transformation. In particular the dipole correlation functions 
make sense. We now sketch one way of proving that they are asymptotic to 
all orders in z. We essentially use the method of Section IV of Ref. 3. 
Namely, as remarked by J. Bricmont, Proposition 2 implies 

(cosq~(n)) A < (cosr  < ( cos~b(n ) )  m 

nj ~ Z, and ~ n i  = O. 

(2) (c~ Z(A'm)-l f c~ ~ c~ V~e~) 

[db%m is the usual Gaussian measure of covariance tiC,x, and 
Z(A, m) is a normalization factor such that (1)A,m = 1] 

(3)  ( ' ) A =  ~')A,m=O,<*~m = lAimoo(~ 

Now choosing the radius of the box A, R(A) = exp - (fz-)-l and the mass, 
m(z) = exp - (lnz) 2, we can expand (cos~(n)) a and (cos~(n)}m in z (and 
estimate the remainder) using complex translations involving, respectively, 
C(0, x) and Cm(0, x). This gives 

k 
(c~ = Z ai Azi + O(zk+') 

i~l  
k 

(c~ = X ai(m) zi + O(zk+') 
i=1 

ai(m ) are as in Proposition 6; a~ are coefficients computed with propa- 
gator Cox, but with all lattice sums restricted to A (for example, 

where 
(1) ~b(n) = ~id~ini, 
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~]x,yeASinh VoVxCox sinh VxVyCxy  sinh VyVoC0y ). I t  is expected  that  all aft 
converge to their  l imit  (as A - ~  oo) at  least  as fast  as R (A)  -~  (t~ > 0), bu t  we 
have  no t  checked  this in detail .  Therefore  up to exponent ia l ly  smal l  terms 
in z, a i (m ) and  ai A coincide,  which proves  the result.  
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